What is JTAG?

Introduction

JTAG, or the Joint Test Action Group, is a standard protocol used for testing and debugging digital circuits. It is a powerful tool that allows engineers to perform various tasks such as testing and verifying circuit functionality, debugging hardware, and programming FPGAs and microcontrollers.

JTAG was developed in the late 1980s as an industry-standard for boundary-scan testing. It is a standard interface used to access the embedded hardware of a device for testing, debugging, and programming. The JTAG standard defines a standard set of pins and their functions, making it possible to test and program chips from different vendors using a common interface.

One of the key benefits of JTAG is that it provides access to the internal circuitry of a device without the need for additional hardware such as a test probe or emulator. This is possible because JTAG uses a series of test access ports (TAPs) that are built into a device's boundary-scan architecture. These TAPs allow test data to be shifted in and out of the device's internal logic, making it possible to test the connections between devices and verify the correct operation of individual components.

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9b7a1d27-5d0e-4c55-9c1c-a834efd68005/image1.png

Another important feature of JTAG is its ability to perform in-system programming. This means that engineers can use JTAG to program the configuration of an FPGA or microcontroller without the need to remove the device from the circuit board. This can be especially useful in situations where the device is difficult to access, such as in a complex system or in a hard-to-reach location.

JTAG has become an essential tool for hardware engineers, particularly in the areas of testing, debugging, and programming. It is widely used in the development of embedded systems, such as mobile phones, routers, and other electronic devices. JTAG is also commonly used in the manufacturing process to test the quality of the devices before they are shipped to customers.

JTAG allows for the testing and programming of digital and analog circuits, including microprocessors, memory devices, and other digital and mixed-signal components. The standard defines a set of signals that are used to perform various operations on the circuit, such as reading and writing data, controlling the circuit's state, and checking for faults.

For more information see this video:

https://www.youtube.com/watch?v=Netxo6NZ2Ws

The JTAG standard is implemented using a set of pins on the circuit, which are used to connect the circuit to a JTAG controller, also known as a JTAG probe. The JTAG controller is typically a specialized piece of hardware or software that is used to communicate with the circuit and perform the desired operations.

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/471bd7a8-4c7c-42fa-af38-da43853e5bd3/image2.png

One of the key advantages of JTAG is that it allows for testing and programming of the circuit without the need for physical access to the individual components. This is particularly useful for circuits that are located on PCBs that are difficult or impossible to access, such as those that are embedded in a larger system or are part of a complex network of interconnected components.

JTAG also provides a way to test and diagnose faults in a circuit. The standard includes a set of tests that can be performed on the circuit to check for various faults, such as short circuits, open circuits, and other common problems. These tests can be run at any time during the development or manufacturing process, allowing for rapid identification and correction of any issues.

In addition to testing and debugging, JTAG is also used for programming of devices. Many microcontrollers and other digital devices can be programmed using the JTAG standard, allowing for rapid and efficient programming of large numbers of devices.

Overall, JTAG is an essential tool for electronic design and manufacturing, providing a way to test and program circuits in a rapid and efficient manner. While it is a complex standard that requires specialized hardware and software, it is widely used and supported by many different vendors and manufacturers, making it an important part of the modern electronic design process.

JTAG Technology

JTAG is commonly referred to as boundary-scan and defined by the Institute of Electrical and Electronic Engineers (IEEE) 1149.1, which originally began as an integrated method for testing interconnects on printed circuit boards (PCBs) implemented at the integrated circuit (IC) level. As PCBs grew in complexity and density—a trend that continues today—limitations in the traditional test methods of in-circuit testers (ICTs) and bed of nails fixtures became evident. Packaging formats, specifically Ball Grid Array (BGA) and other fine pitch components, designed to meet ever-increasing physical space constraints, also led to a loss of physical access to signals.